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I. CONVENTIONS, LATTICE AND DEFINITIONS

A. Original Graphene Lattice and Brillouin Zone

The original graphene lattice has the lattice wavevectors, in vector and complex notation (x/y components are the
real/imaginary part of the complex number):

a1 = (a
√

3, 0) = a
√

3ei0, a2 = a(
√

3/2, 3/2) = a
√

3(1/2,
√

3/2) = a
√

3eiπ/6 (1)

where a is the bond length. We now pick the unit cell. The origin of the unit cell (and by default the rotation of
the axis of the Moire later) is in the center of the hexagon. This means that the A and B sites in the lattice are at
position:

tA = aeiπ/6, tB = ae−iπ/6 (2)

The BZ lattice vectors satisfy Gi · aj = 2πδij :

G1 =
2π

a
√

3
(1,−1/

√
3) =

4π

3a
e−iπ/6, G2 =

4π

3a
eiπ/2 (3)

The K point is then defined as the C3 symmetric point of the BZ:

K = (
2

3
G1x, 0) =

2

3
(~G1 +

1

2
~G2) (4)

We now move to the Moire BZ and to the Moire Lattice. Employing complex number notation, we define the
difference in wavevectors between two layers

q1 = 2|K|Sin(θ/2)eiπ/2, q2 = 2|K|Sin(θ/2)ei7π/6, q3 = 2|K|Sin(θ/2)ei11π/6 (5)

shown in Fig[??], where θ is the rotation angle between two layesr.

B. Moire BZ for Bilayer

While the construction of the multi-layer BZ, where there are different angles is more complicated and will be
addressed later, we find that the twisted bilayer Moire Brillouin zone wavevectors are:

GM1 = q2 − q1 = 2|K| sin(θ/2)
√

3ei4π/3, GM2 = q3 − q1 = 2|K| sin(θ/2)
√

3ei5π/3 (6)

The bilayer Moire lattice vectors are then ~Mi · ~GMj = 2πδij :

M1 =
4π

3(2|K| sin(θ/2))
ei7π/6; M2 =

4π

3(2|K| sin(θ/2))
ei11π/6 (7)

From now on we will call ∆ = 2|K| sin(θ/2).
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II. NOTATIONS ON SYMMETRIES AND REPRESENTATIONS

We first specify the notations about symmetry and representations. If the Hamiltonian is symmetric under a group
operation, g, we have

H(gk) = Dk(g)H(k)Dk(g−1), (8)

where Dk, the representation matrix of symmetry operator, in general depends on k. In general H(k) is not periodic
in k: it may change through a unitary transformation after a translation of reciprocal lattice, i.e.,

H(k + G) = V GH(k)V G†. (9)

Here V G is the “embedding matrix” [? ] and it satisfies V G1V G2 = V G1+G2 and V 0 = I. For symmorphic space
groups, we can always make Dk independent on k by properly choosing the embedding matrices. To be specific, for
tight-binding models we can define the Hamiltonian in momentum space as Hαs,βs′(k) = 〈φαsk|Ĥ|φβs′k〉, where the
Blöch bases are |φαsk〉 = 1√

N

∑
Rαs e

ik·(R+ts)|αR+ts〉, such that the embedding matrices are V G
αs,βs′ = δαβδs,s′e

−iG·ts

and the Dk’s are independent on k. Here α is the orbital label, R is the lattice vector, ts is the sublattice vector (the
position of the sites in the unit cell), and N is the number of unit cells in real space. In this gauge, adopted in the
rest of the paper, we sometimes omit the notation Dk(g) and replace it directly with g. When we write g acting on
Hamiltonian and wave function, i.e., gH(k)g−1 and g|u〉, we mean it shorthand for Dk(g)H(k)Dk(g)−1 and Dk(g)|u〉,
respectively.

Substituting Eq. (9) to Eq. (8), we get the following the identity

gV Gg−1 = V gG. (10)

For a high symmetry momentum k on the Brillouin Zone (BZ) boundary, which satisfies gk = k + G with G some
reciprocal lattice, we have

gH(k)g−1 = V gk−kH(k)V gk−k†. (11)

Using identity (10), it is direct to prove that the matrices V k−gkg, with gk = k (modulo a reciprocal lattice), form a
group commutting with H(k). Therefore, when we say the wave functions at k, |unk〉, form a representation of the
symmetry g, we actually mean that

V k−gkg|unk〉 =
∑
m

|umk〉Smn(g). (12)

Here Smn(g) is the corresponding representation matrix.

III. MOIRÉ BAND MODEL (MBM)

A. Twisted Layers of Graphene (TMLG): One-valley Moiré band model (MBM-1V)

We here present a detailed derivation of the band structure of the Moiré pattern in twisted M-layer (M ∈ Z)
graphene, with emphasis on the symmetries of the system. When the twisting angle is small, a Moiré pattern is
formed by the interference of lattices from the M layers. The Moiré pattern has a very large length scale (or unit cell,
if commensurate). The low energy, close to half-filling band structure is formed only from the electron states around
the Dirac cones in each layer. A Moiré band theory describing such a state is built by the authors of Ref. [? ]. In the
following, we refer to it as one-valley Moiré model (MBM-1V). Part of our analytical study, especially the topological
study, is mainly based on this model. Thus in this section, we give a review of the one-valley Moiré model and extend
it to M layers. In order to index the M layer angle, pick a reference layer, called layer 1 and index the angles of all
layers a from that layer θ1a = θa, a ∈ (2 . . .M).

We define the Blöch bases in the layer a as∣∣∣φ(a)
pα

〉
=

1√
N

∑
Ra

ei(R
a+taα)·p |Ra + taα〉 (13)
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where a = 1 . . .M is the layer index, α = 1, 2 is the sublattice index, taα is the sublattice vector in layer a, Ra is
lattice vector in layer a, and |Ra + taα〉 is the Wannier state at site taα in lattice Ra. The Blöch bases in any other
layer b = 1 . . .M can be obtained by rotating and shifting the Blöch basis in layer a∣∣∣φ(b)

pβ

〉
= P̂{Mθab

|d}

∣∣∣∣φ(a)(
M−1
θab

p
)
β

〉
=

1√
N

∑
Rb

ei(R
b+tbβ)·p ∣∣Rb + tbβ

〉
(14)

Here Mθab is a rotation (by an angle θab = θb − θa) along the z axis, d is the translation from top layer to bottom
layer, P̂{Mθ|d} =

∑
Ra
|Mθab(R

a + taα)〉 〈Ra + taα| is the corresponding rotation operator on wave-functions, Rb is the
lattice vector in the b layer, and tbβ is the sublattice vector in the bottom layer. It is easy to show that the intra-layer
single-particle first quantized Hamiltonians of the a and b layers are related by:

H
(bb)
αβ (p) = H

(aa)
αβ

(
M−1
θab

p
)

(15)

Here H(aa) is the a layer Hamiltonian and H(bb) is the b layer Hamiltonian.
We now derive the inter-layer coupling. First we Fourier transform the inter-layer hopping to real space:

H
(ab)
αβ (p,p′) =

〈
φ(a)
pα

∣∣∣ Ĥ ∣∣∣φ(b)
p′β

〉
=

1

N

∑
RaRb

e−i(R
a+taα)·p+i(Rb+tbβ)·p′ 〈Ra + taα| Ĥ

∣∣Rb + tbβ
〉

(16)

We follow Ref. [? ] to adopt the tight-binding, two-center approximation, for the inter-layer hopping, i.e.,

〈Ra + taα| Ĥ
∣∣Rb + tbβ

〉
= t
(
Ra + taα −Rb − tbβ

)
∼ exp(− 1

λ

(
Ra + taα −Rb − tbβ

)r
) (17)

where r is a power, which for gaussian orbitals is 2. Other power-law terms can appear, but we here focus only on
the exponetial, hence the ∼ equivalence. We now Fourier transform:

t
(
Ra + taα −Rb − tbβ

)
=

1

NΩ

∑
q

∑
G

tabq+Ge
i(q+G)·(Ra+taα−R

b−tbβ) (18)

Here q sums over all momenta in a chosen, reference layer BZ, G sums over all of that layer’s reciprocal lattices.
For reference, we can choose this layer to be layer 1, but this choice is of course arbitrary. and tq+G is the Fourier
transformation of t (r).

tabq =

∫
d2r‖e

i~q·~r‖e−
1
λ (r2ab+r

2
‖)
r/2

(19)

where the integral is over the in-plane distance r‖ and rab = |a− b|d is the perpendicular distance between the layers
a and b.

Substituting this back into Eq. (20), we get

H
(ab)
αβ

(
pa,pb

)
= 1

N2Ω

∑
RaRb

∑
q

∑
G tabq+Ge

i(q+G)·(Ra+taα−R
b−tbβ)e−i(R

a+taα)·pa+i(Rb+tbβ)·pb =

= 1
N2Ω

∑
RaRb

∑
q

∑
G tabq+Ge

iRb(pb−q−G)e−iR
a(pa−q−G)ei(t

b
βp
b−taαp

a+q(taα−t
b
β)+G(taα−t

a
β)) (20)

We use
1

N

∑
Rb

eiR
b(pb−q−G) =

∑
Gb

δq+G,pb+Gb (21)

Where the second sum is over Gb, the reciprocal lattice vector in the layer b which makes an angle θ1b with layer 1.
In other words Gb = Mθ1b

G′ where G′ is another vector in the reference layer BZ. Hence we can just sum over G′
to obtain:

1

N

∑
Rb

eiR
b(pb−q−G) =

∑
G′

δpb−q−G+M1bG′,0 (22)

Similarly:
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1

N

∑
Ra

e−iR
a(pa−q−G) =

∑
G′′

δpa−q−G+M1aG′′,0 (23)

where G′′ is another vector in the reference layer BZ. We hence have:

H
(ab)
αβ

(
pa,pb

)
= 1

Ω

∑
q

∑
G,G′,G′′ t

ab
q+Gδpa−q−G+M1aG′′,0δpb−q−G+M1bG′,0e

i(tbβp
b−taαp

a+q(taα−t
b
β)+G(taα−t

a
β)) =

=
∑
G′,G′′ t

ab
pb+M1bG′

δpa+M1aG′′,pb+M1bG′e
i(tbβp

b−taαp
a+(pb+M1bG

′−G)(taα−t
b
β)+G(taα−t

a
β)) =

=
∑
G′,G′′ t

ab
pb+M1bG′

δpa+M1aG′′,pb+M1bG′e
i(tbβp

b−taαp
a+(pb+M1bG

′)(taα−t
b
β)) =

=
∑
G′,G′′ t

ab
pb+M1bG′

δpa+M1aG′′,pb+M1bG′e
i(taαp

b−taαp
a+M1bG

′(taα−t
b
β)) =

=
∑
G′,G′′ t

ab
pb+M1bG′

δpa+M1aG′′,pb+M1bG′e
i(taα(pa+M1aG

′′−M1bG
′)−taαp

a+M1bG
′(taα−t

b
β)) =

=
∑
G′,G′′ t

ab
pb+M1bG′

δpa+M1aG′′,pb+M1bG′e
i(taα(M1aG

′′−M1bG
′)+M1bG

′(taα−t
b
β)) =

=
∑
G′,G′′ t

ab
pb+M1bG′

δpa+M1aG′′,pb+M1bG′e
i(taαM1aG

′′−tbβM1bG
′) =

=
∑
G′,G′′ t

ab
pb+M1bG′

δpa+M1aG′′,pb+M1bG′e
i(tαG

′′−tβG′) (24)

where tα, tβ are the hoppings in the reference layer (we have used taαM1aG
′′ = (M1a)−1taαG

′′ = tαG
′′). We hence find:

H
(ab)
αβ

(
pa,pb

)
=
∑
G′,G′′

tabpa+M1aG′′δpa+M1aG′′,pb+M1bG′e
i(tαG

′′−tβG′) (25)

where both G′ and G′′ are reciprocal lattice vectors in the reference layer. Since the hopping between layers decays
exponentially, we will only consider tab amplitudes between consecutive layers a = b± 1 and we will call this tq.

In the MBM-1V, only the low energy electron states around Dirac cones are considered. Thus we approximate the
intra-layer Hamiltonian in the reference layer 1 as

H(11) (K + δp) ≈ vF δp · σ (26)

H(bb) (MθK + δp) ≈ vF
(
M−1
θ1b
δp
)
· σ ≈ vF δp · σ (27)

Here δp is a small momentum deviation from the K point. In the bottom layer Hamiltonian, we perform a second
approximation and neglect the θ-dependence of H(bb). We leave the discussion of the effect of this approximation for
appendix ??.

The computations and approximations involved in H(ab) are not so direct and need more discussion. First, in
Eq. (25), for small θ1a, we only need to consider the electron states around the Dirac cone in each layer, i.e., states
with momenta pa = M1aK + δpa and pb = M1bK + δpb (modulo a reciprocal lattice vector). tq depends only on
the magnitude of q and decays exponentially when |q| becomes larger than 1/d⊥: tq ∝ exp(−α(|q|d⊥)γ), here d⊥
is the distance between two layers,. Fitting to data gives α ≈ 0.13, and γ ≈ 1.25 [? ]. Therefore we keep the
three largest relevant tpa+M1aG′′ terms as tM1aK+δpa , tC3zM1aK+δpa , and tC2

3zM1aK+δpa , corresponding in Eq. (25)
to p = M1aK + δpa and G′′ = 0, G′′ = C3zK − K, and G′′ = C2

3zK − K in Eq. (25), respectively (notice all
these vectors are in reference layer 1). With C3 symmetry, all these three terms are equal to wΩ, and the inter-layer
coupling can be reformulated as

H
(aa+1)
αβ (M1aK + δpa,M1a+1K + δpa+1) ≈ w

∑
G′

{
δM1aK+δpa, M1a+1K+δpa+1+M1a+1G′e

−itβ ·G′

+ δC3zM1aK+δpa, M1a+1K+δpa+1+M1a+1G′e
itα·(C3zK−K)−itβ ·G′

+ δC2
3zM1aK+δpa, M1a+1K+δpa+1+M1a+1G′e

itα·(C2
3zK−K)−itβ ·G′

}
(28)

Since δpa, δpa+1, and M1a+1K −M1,aK (∀a) are all small quantities compared with reciprocal lattice vector, only
the G′′ = 0, C3zK −K,C2

3zK −K terms are nonzero in the first, second, and third term. We have also assumed that
only a, a + 1 layer coupling takes place - the coupling between other layers is considered irrelevant. Therefore the
inter-layer Hamiltonian is:

H
(aa+1)
αβ (M1aK + δpa,M1a+1K + δpa+1) ≈ w

{
δM1aK+δpa, M1a+1K+δpa+1

+

+ δC3zM1aK+δpa, M1a+1C3zK+δpa+1e
i(tα−tβ)·(C3zK−K) + δC2

3zM1aK+δpa, M1a+1C2
3zK+δpa+1

ei(tα−tβ)·(C2
3zK−K)

}
(29)
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Since C3z commutes with any axis rotation, we can write:

H
(aa+1)
αβ (M1aK + δpa,M1a+1K + δpa+1) ≈ w

{
δδpa, δpa+1+(M1a+1−M1a)K

+ δδpa, δpa+1+C3z(M1a+1−M1a)Ke
i(tα−tβ)·(C3zK−K) + δδpa, δpa+1+C2

3z(M1a+1−M1a)Ke
i(tα−tβ)·(C2

3zK−K)
}

(30)

In order to restore the general hopping between two layers (not only consecutive layer hopping, all one needs to do is
make the substitution a+ 1→ b w → tab).

We now make one further approximation
1. Small angle approximation (M1a+1 −M1a) = Ma+1,a

We hence have that the Hamiltonian can be finally written as

H
(aa+1)
αβ (M1aK + δpa,M1a+1K + δpa+1) ≈ w

{
δδpa, δpa+1+Ma+1,aK

+ δδpa, δpa+1+C3z(Ma+1,a)Ke
i(tα−tβ)·(C3zK−K) + δδpa, δpa+1+C2

3z(Ma+1,a)Ke
i(tα−tβ)·(C2

3zK−K)
}

(31)

H
(aa+1)
αβ ≈ w

3∑
j=1

δδpa,δpa+1+qa,a+1
j

T jαβ (32)

where qa,a+1
1 = Maa+1K, qa,a+1

2 = C3zq
a,a+1
1 , qa,a+1

3 = C3zq
a,a+1
2 (Fig. ??), and

T1 = σ0 + σx (33)

T2 = σ0 + cos

(
2π

3

)
σx + sin

(
2π

3

)
σy (34)

T3 = σ0 + cos

(
2π

3

)
σx − sin

(
2π

3

)
σy (35)

The general form of this expression, for layers ab is

H
(ab)
αβ ≈ w

ab
3∑
j=1

δδpa,δpb+qa,bj
T jαβ (36)

where qa,b1 = MabK, qa,b2 = C3zq
a,b
1 , qa,b3 = C3zq

a,b
2 . The full Hamiltonian can be written as:

H
(ab)
α,β (δpa, δpb) ≈ vF δp · σδpapb + wab

3∑
j=1

δδpa,δpb+qa,bj
T jαβ (37)

Notice that while we have the Hamiltonian, we have not yet worked out its symmetry properties, nor the Bloch
translation properties.

B. Two Layers in 2D

We review here the two-layer example, where there is only one set of qj . To write the Hamiltonian in more compact
form, hereafter we re-label δpa as k−Q, and δpb as k−Q′. Q and Q′ take value in the hexagonal lattice formed by
adding q1,2,3 iteratively (Fig. ??(b)) with integer coefficients. There are two types of Q’s, denoted as black and red
circles respectively, one for the top layer states and the other for the bottom layer states. Then, the Moiré Hamiltonian
can be written as

H
(MBM−1V )
Q,Q′ (k) = δQQ′vF (k−Q) · σ + w

3∑
j=1

(
δQ′−Q,qj + δQ−Q′,qj

)
T j (38)
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Such a Hamiltonian, when an infinite number of Q,Q′ are included, is periodic in momentum space: it keeps invariant
(up to a unitary transformation) under a translation of b1 = q1 − q3 or b2 = q2 − q3:

HMBM−1V (k + bi) = V biHMBM−1V (k)V bi†, (39)

where i = 1, 2, and V G
Q,Q′ = δQ,Q+G is the embedding matrix. Thus bi=1,2 can be thought as Moiré reciprocal bases,

and a Moiré BZ can then be defined, as shown Fig. ??(b). An important property of this Hamiltonian is that, up to
a scaling constant, it depends on a single parameter

H
(MBM−1V )
Q,Q′ (k) = vF kD

{
δQQ′

(
k̄− Q̄

)
· σ + α

3∑
j=1

(
δQ̄′−Q̄,q̄j + δQ̄−Q̄′,q̄j

)
T j
}

(40)

Here kD = |MθK−K| = 2 |K| sin θ
2 is the distance between the top layer Dirac cone and the bottom layer Dirac cone

(Fig. ??(a)), k̄ = k/kD, Q̄ = Q/kD, q̄j = qj/kD are dimensionless momenta, and α = w
vF kD

is the single parameter
that the Hamiltonian depends on.

C. Symmetries

Then the momentum lattice in the layers is given by Q1, Q2 which run over (the origin of our system of coordinates
is in layer 1)

Q1 : n1b1 + n2b2; Q2 : n1b1 + n2b2 + q1, n1, n2 ∈ Z (41)

With these vectors, we can write the momentum in the 3 layers:

δp1 = k −Q1; δp2 = k −Q2; δp3 = k −Q3 (42)

We now derive the important equations

• Hamiltonian:

Hαβ
QmQn

(k) = (~k − ~Qm) · ~σαβδmn + wmn
∑
j

T jα,βδQm,Qn−qmnj (43)

• Bloch Periodicity

H(k − bi) = V biH(k)V bi†, V GQm,Qn = δQn,Qm+G (44)

. b1, b2 can be thought of as reciprocal lattice vectors. We hence have a Bloch periodicity and a Brillouin Zone
with reciprocal lattice vectors b1, b2

• C3z symmetry:

Using the properties (our rotations are counter-clockwise) in both spin and lattice coordinates

C3z = exp(i2π/3sz)δQm,C3zQn (45)

where we notice that if Qm belongs to one layer, C3zQm belongs to the same layer (C3z rotation does not change
layer. We clearly notice the defining group properties.)

C3
3z = 1; C3zC

†
3z = 1 (46)

C3zTjC†3z = Tj+1; (T4 = T1); C3z(~k · ~σ)C†3z = ( ~C3zk) · σ; C3zqj = qj+1 (47)
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We are ready to obtain the Hamiltonian transformation:

C3zH(k)C†3z = (C3zH(k)C†3z)
αβ
QrQp

=

= δQr,C3Qm(C3z
~k − C3z

~Qm) · ~σαβδmnδQp,C3zQn + δQr,C3zQmw
mn
∑
j T

j+1
α,β δQm,Qn−qmnj δQp,C3zQn =

= (C3z
~k − ~Qr) · ~σαβδrp + wrp

∑
j T

j+1
α,β δC−1

3z Qr,C
−1
3z Qp−q

rp
j

=

= (C3z
~k − ~Qr) · ~σαβδrp + wrp

∑
j T

j
α,βδC−1

3z Qr,C
−1
3z Qp−q

rp
j−1

=

= (C3z
~k − ~Qr) · ~σαβδrp + wrp

∑
j T

j
α,βδC−1

3z Qr,C
−1
3z Qp−C

−1
3j q

rp
j

=

= (C3z
~k − ~Qr) · ~σαβδrp + wrp

∑
j T

j
α,βδQr,Qp−qrpj = H(C3zk)αβQrQp = H(C3zk) (48)

In going from the first to second layer we used the fact that if Qm is in a certain layer, so is C3zQm and hence
Qr

• C2x symmetry:

We pick a center of rotation that runs between the two layers. As such, the rotation sends layer 1 into 2 and
viceversa

C2x : Q1 ↔ Q3, Q2 ↔ Q2 (49)

C2x : q1 → −q1, q2 → −q3, q3 → −q2 (50)

The symmetry operator is:

C2x = σxδQm,C2xQn , C2
2x = C2xC†2x = 1 (51)

The σx acts on the T matrices as:

C2xT1C†2x = T1, C2xT2C†2x = T3, C2xT3C†2x = T2, (52)

We are ready to obtain the Hamiltonian transformation:

C2xH(k)C†2x = (C2xH(k)C†2x)αβQrQp =

= δQr,C2xQm(C2x
~k − C2x

~Qm) · ~σαβδmnδQp,C2xQn +

+ δQr,C2xQmw
mn(T 1

α,βδQm,Qn−qmn1
+ T 3

α,βδQm,Qn−qmn2
+ T 2

α,βδQm,Qn−qmn3
)δQp,C2xQn =

= (C2x
~k − ~Qr) · ~σαβδrp + (53)

+ δQr,C2xQmw
mn(T 1

α,βδC−1
2x Qr,C

−1
2x Qp−qmn1

+ T 3
α,βδC−1

2x Qr,C
−1
2x Qp−qmn2

+ T 2
α,βδC−1

2x Qr,C
−1
2x Qp−qmn3

)δQp,C2xQn =

= H(C2xk)αβQrQp = H(C2xk)

In order to check that this is true (and it is) we will need to check the above equation term by term. The
diagonal part is obviously true, we only need to check the hopping part; We introduce the notation m = C−1

2x r
for the indices of Qr, Qm etc:

δQr,C2xQmw
mn(T 1

α,βδC−1
2x Qr,C

−1
2x Qp−qmn1

+ T 3
α,βδC−1

2x Qr,C
−1
2x Qp−qmn2

+ T 2
α,βδC−1

2x Qr,C
−1
2x Qp−qmn3

)δQp,C2xQn =

= wC
−1
2x r,C

−1
2x p(T 1

α,βδ
C−1

2x Qr,C
−1
2x Qp−q

C
−1
2x r,C

−1
2x p

1

+ T 3
α,βδ

C−1
2x Qr,C

−1
2x Qp−q

C
−1
2x r,C

−1
2x p

2

+ T 2
α,βδ

C−1
2x Qr,C

−1
2x Qp−q

C
−1
2x r,C

−1
2x p

3

)(54)
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• C2zT Symmetry.
This symmetry does nothing to the wavevectors qi or lattices Q, and hence is represented diagonally in Q space.
In spin space, it takes Complex conjugates, but then acts with another spin matrix so as to get back to the
same Hamiltonian. This pins the summetry to be

C2zT = σxδQm,QnK (55)

where K is the complex conjugation. We find that

C2zT T1T †C†2z = T1, C2zT T2T †C†2z = T2, C2zT T3T †C†2z = T3 (56)

and

(C2zT )2 = 1 (57)

The proof is:

C2zT H(k)T †C†2z = (C2zT H(k)T †C†2z)
αβ
QrQp

=

= δQr,Qm(~k − ~Qm) · ~σαβδmnδQp,Qn + δQr,Qmw
mn?

∑
j T

j
α,βδQm,Qn−qmnj δQp,Qn =

= H(k)αβQrQp = H(k) (58)

iff

wmn = wmn? (59)

Remember that T acts only as complex conjugation on H(k) in the above. All rotations of momenta here are
with respect to the Γ point of the Moire BZ.
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