Edge Modes in OHE Regime their nature & use

'bulk – edge' correspondence

• interference

• thermal conductance

Moty Heiblum

why 2D electrons....heart of present transistors

high mobility electrons, gate controlled

exchange statistics of 2D electrons is rich

exotic states

exchange statistics in 3d fermions bosons $\psi \rightarrow -\psi$ $\psi \rightarrow +\psi$ both $\psi \rightarrow \psi$

anyonic statistics in $2d \rightarrow abelian$ (Laughlin qp's) anyons $\psi \to e^{i2\theta} \psi$ $\psi \to e^{i\theta} \psi$ $e^{i2 heta}$ $\Psi \to e^{i2\theta} e^{i4\theta} \psi$ $e^{i4 heta}$ $e^{i2\theta}e^{i4\theta} = e^{i4\theta}e^{i2\theta}$

anyonic statistics in 2d → *non-abelian*

degenerate ground state

$$\left|\psi\right\rangle = \sum_{i} a_{i} \left|\psi_{i}\right\rangle = \vec{a} \cdot \vec{\psi}$$

$$\left|\psi\right\rangle = \vec{a}\cdot\vec{\psi} \rightarrow \left(\boldsymbol{U}\vec{a}\right)\cdot\vec{\psi}$$

 $\text{exchange} \rightarrow \text{unitary}$

non-abelian anyons

$$\Psi \rightarrow \boldsymbol{U}_1 \boldsymbol{U}_2 \, \Psi$$

 $\boldsymbol{U}_1 \boldsymbol{U}_2 \neq \boldsymbol{U}_2 \boldsymbol{U}_1$

anyons in QHE

2DEG + magnetic field ... classical bulk

most convenient picture...

2DEG + magnetic field ... classical edge

quantizing the Hall effect

no disorder

with disorder

choice of gauges for \vec{A}

$$H = \frac{1}{2m} \left(\vec{p} - \frac{e}{c} \vec{A} \right)^2$$

$$\vec{A} = (A_x, A_y) = \frac{B}{2}(-y, x)$$

symmetric (circular) gauge

2DEG + magnetic field ... quantum edge

convenient gauge (for interference)

Landau levels...resembling classical orbits

edge modes immune to back scattering

2DEG + magnetic field ... quantum edge

V = number of electrons per *flux quantum*

Integer Quantum Hall Effect: n electrons circle around one flux quantum (more electrons than flux quanta).

edge current & bulk current

ballistic, but with energy dissipation hot spots

Imaging of the dissipation in quantum-Hall-effect experiments

U. Klaß, W. Dietsche, K. von Klitzing, and K. Ploog

Max-Planck-Institut für Festkörperforschung, W-7000 Stuttgart.80, Federal Republic of Germany

Received October 18, 1990 Z. Phys. B - Condensed Matter 82, 351-354 (1991)

will return to hot spots later ...

in the beginning ... SI MOSFET

VOLUME 45, NUMBER 6

PHYSICAL REVIEW LETTERS

New Method for High-Accuracy Determination of the Fine-Structure Constant Based on Quantized Hall Resistance

K. v. Klitzing

Physikalisches Institut der Universität Würzburg, D-8700 Würzburg, Federal Republic of Germany, and Hochfeld-Magnetlabor des Max-Planck-Instituts für Festkörperforschung, F-38042 Grenoble, France

and

G. Dorda Forschungslaboratorien der Siemens AG, D-8000 München, Federal Republic of Germany

and

lish Laboratory, Cambridge CB3 0HE, United Kingdom (Received 30 May 1980)

continued with... GaAs MODFET

PHYSICAL REVIEW LETTERS

31 May 1982

Two-Dimensional Magnetotransport in the Extreme Quantum Limit D. C. Tsui,^{(a), (b)} H. L. Stormer,^(a) and A. C. Gossard

Bell Laboratories, Murray Hill, New Jersey 07974 (Received 5 March 1982)

tion. Our observation of a quantized Hall resistance of $3h/e^2$ at $\nu = \frac{1}{3}$ is a case where Laughlin's argument breaks down. If we attribute it to the presence of a gap at E_F when $\frac{1}{3}$ of the lowest Landau level is occupied, his argument will lead to quasiparticles with fractional electronic charge of $\frac{1}{3}$, as has been suggested for $\frac{1}{3}$ -filled quasi one-dimensional systems.²¹

V = number of electrons per *flux quantum*

n = 1/3

Fractional Quantum Hall Effect n = 1/m: One electron circles around m flux quanta (more flux quanta than electrons).

Each flux quantum gets a fraction of the electron.

adiabatic v = 1/3...

 $q = I(r)\Delta t = 2\pi r J(r)\Delta t = e/3$

with time...

hi quality 2DEG

growing GaAs – AlGaAs heterostructures

MBE growth

Molecular Beam Epitaxy (MBE)

pressure ~1 \div 10 \times 10 $^{-12}$ torr growth rate ~1 micron/Hour \rightarrow 1ML/sec

making pure 2DEG

typical structure

mobility: scattering mechanisms

- 1. remote Ionized Impurities
 - . interface Roughness
- 3. alloy scattering
- 4. background Impurities
- 5. phonon Scattering

$$\frac{1}{\mu} = \sum_{i} \frac{1}{\mu_{i}}$$

deep DX centers – electrons freeze at 100K

mobility.....dependence on spacer

superlattice type doping

experimental data

donor correlations

standard Hall-bar

typical 1st excited LL

 $n_e = 3.2 \times 10^{11} \text{ cm}^{-2}$ $\mu = 30.5 \times 10^6 \text{ cm}^2/\text{V-sec}$

in dark

types of edge modes
edge modes

edge of IQHEinteger

∨ = **1**, **2**, **3**,...

edge modes

downstream charge.....particle-like states

downstream + upstream (neutral)hole-conjugate & non-abelian states

current fluctuations

shot noise

it started with - noise in vacuum tubes

noisy current in vacuum tubes

classical shot noise

classical shot noise

large number of impinging electrons

very small escape probability

spectral density (A²/Hz)

shot noise =0 full Fermi sea (un-partitioned electrons)

zero- temperature ordered electrons are noiseless ! Khlus 1987 Lesovik 1989 during measurement time τ total charge transferred Q

$$Q = e \sum_{i=1}^{N} p_i \qquad \qquad p_i = 0, \quad 1 \\ < p_i >= t$$

charge fluctuations : $<\Delta Q>=e\sum_{i=1}^{N}(p_i-<p_i>)=0$ $< (\Delta Q)^2 >= e^2 < \left[\sum_{i=1}^N (p_i - < p_i >) \right]^2 >$ $=e^{2}\sum_{i=1}^{N} <(p_{i} - < p_{i} >)^{2} >$ $= e^2 N \cdot t(1-t)$ < $p_i > = < p_i^2 > = t$ (A²/Hz) $S(0) = 2 \frac{\langle (\Delta Q)^2 \rangle}{\tau} = 2eV \frac{e^2}{h}t(1-t) = 2eI_{transmitted}(1-t)$

spectral density of current fluctuations

shot noise - single channel

similar conductance - different shot noise

shot noise, T > 0

quantum point contact (QPC)

conductance and shot noise in QPC

excess shot noise in QPC

Kumar et al. 1996

shot noise in QPC

- experimental results -

preferential backscattering of edge channels

will shot noise measure e or e^* ?

partitioning edge modes

FQHE

quasiparticles in edge modes are plasma-like waves - charge is not defined

shot noise measures the backscattered charge through the bulk (in the QPC)

negative QPC gate voltage

experimental considerations

difficulties in measurements

experimental setup

frequency above 1/f noise corner of preamplifier;
capacitance compensated by resonant circuit;

$$f_0 = \frac{1}{2\pi\sqrt{LC}} \approx 2 \quad \rightarrow 4MHz \quad , \quad \Delta f_0 = \frac{1}{2\pi RC} \approx 30 \, kHz$$

```
v = 1/3
```


temperature dependence v = 2/5

bunching of quasiparticles at low temperatures

similar effect at V=3/7...

1st excited Landau level

v = 5/2 Moore - Read proposed non-abelian state

 $\mu \sim 30.10^{6} \text{ cm}^{2}/\text{V-s}$

expected charge of excitations

this fractions is fragile...

particle-like (Laughlin) vs hole-conjugate

quasiparticles

expected v = 1/3 particle-like

bulk: single component and gapped (incompressible liquid)

edge: single charge mode with $G=G_0/3$

v = 2/3 hole-conjugate

upstream e/3 was not found.....Ashoori 1992

MacDonald's clean edge

naive model 2-probe conductance = $4/3 e^2/h$

measured 2-probe conductance = $2/3 e^2/h$

upstream neutral mode @v = 2/3

downstream charge mode $2/3 e^2/h + upstream$ neutral mode

Kane et al. 1994

hole-conjugate states

edge modes mirror the bulk

'bulk – edge' correspondence

net number of modes (down minus up) – must be preserved in equilibration

neutral modes

• not observed in charge transport measurements

• carrying energy without net charge dipole like

• possible source of dephasing of interference

• topological or due to edge-reconstruction
neutral mode \rightarrow 'flow of dipoles'

shot noise (electron-hole) without net current

excitation of neutral mode hot spot *

qp

upstream noise v=2/3

***** excitation of neutral mode at QPC ...

upstream noise v=2/3

noise due to neutral mode

neutral mode at v = 5/2

clear evidence of upstream neutral mode

v = 5/2 two leading orders

state	statistics	charge	upstream neutral mode
Moore-Read (Pfaffian) Moore & Read, Nuclear Phys. B (1991)	non-abelian	e/4	no
anti-Pfaffian Lee, PRL (2007); Levin et. al. PRL (2007)	non-abelian	e/4	yes

there are other orders too.....will see later

to be continued